273 research outputs found

    A Constraint-directed Local Search Approach to Nurse Rostering Problems

    Full text link
    In this paper, we investigate the hybridization of constraint programming and local search techniques within a large neighbourhood search scheme for solving highly constrained nurse rostering problems. As identified by the research, a crucial part of the large neighbourhood search is the selection of the fragment (neighbourhood, i.e. the set of variables), to be relaxed and re-optimized iteratively. The success of the large neighbourhood search depends on the adequacy of this identified neighbourhood with regard to the problematic part of the solution assignment and the choice of the neighbourhood size. We investigate three strategies to choose the fragment of different sizes within the large neighbourhood search scheme. The first two strategies are tailored concerning the problem properties. The third strategy is more general, using the information of the cost from the soft constraint violations and their propagation as the indicator to choose the variables added into the fragment. The three strategies are analyzed and compared upon a benchmark nurse rostering problem. Promising results demonstrate the possibility of future work in the hybrid approach

    A new filtering algorithm for the graph isomorphism problem

    Get PDF
    International audienceA new filtering algorithm for the graph isomorphism proble

    On Improving Local Search for Unsatisfiability

    Full text link
    Stochastic local search (SLS) has been an active field of research in the last few years, with new techniques and procedures being developed at an astonishing rate. SLS has been traditionally associated with satisfiability solving, that is, finding a solution for a given problem instance, as its intrinsic nature does not address unsatisfiable problems. Unsatisfiable instances were therefore commonly solved using backtrack search solvers. For this reason, in the late 90s Selman, Kautz and McAllester proposed a challenge to use local search instead to prove unsatisfiability. More recently, two SLS solvers - Ranger and Gunsat - have been developed, which are able to prove unsatisfiability albeit being SLS solvers. In this paper, we first compare Ranger with Gunsat and then propose to improve Ranger performance using some of Gunsat's techniques, namely unit propagation look-ahead and extended resolution

    Éthique des algorithmes

    Get PDF
    Bulletin de l'Association Française de Recherche Opérationnelle et d'Aide à la Décision (ROADEF)National audienceLes algorithmes que nous concevons sont souvent utilisés pour proposer des solutions à des décideurs, et parfois même prendre des décisions de façon autonome, dans des contextes très variés. Aussi sommes-nous amenés à nous interroger sur les applications de ces algorithmes. Mais si nous sommes plutôt bien placés pour évaluer les possibilités offertes par un nouvel algorithme, la question de savoir s'il est souhaitable ou non de l'utiliser pour une nouvelle application nous dépasse bien souvent. Une première réponse à cette question consiste à s'appuyer sur la législation. Cependant, dans la mesure où les avancées technologiques ouvrent régulièrement de nouvelles possibilités sur lesquelles la loi ne s'est pas encore prononcée, le simple respect de la loi n'est pas suffisant, et il est nécessaire de suivre des principes éthiques garantissant le respect des droits fondamentaux de chaque être humain. Enfin, en plus d'être licite et éthique, un algorithme doit également être robuste afin de garantir qu'il ne peut avoir d'effets involontaires. Concrètement, ces principes se traduisent par des propriétés qui sont évoquées dans cet article

    Solving the Non-Crossing MAPF with CP

    Get PDF
    We introduce a new Multi-Agent Path Finding (MAPF) problem which is motivated by an industrial application. Given a fleet of robots that move on a workspace that may contain static obstacles, we must find paths from their current positions to a set of destinations, and the goal is to minimise the length of the longest path. The originality of our problem comes from the fact that each robot is attached with a cable to an anchor point, and that robots are not able to cross these cables. We formally define the Non-Crossing MAPF (NC-MAPF) problem and show how to compute lower and upper bounds by solving well known assignment problems. We introduce a Variable Neighbourhood Search (VNS) approach for improving the upper bound, and a Constraint Programming (CP) model for solving the problem to optimality. We experimentally evaluate these approaches on randomly generated instances

    Dynamic Demand-Capacity Balancing for Air Traffic Management Using Constraint-Based Local Search: First Results

    Full text link
    Using constraint-based local search, we effectively model and efficiently solve the problem of balancing the traffic demands on portions of the European airspace while ensuring that their capacity constraints are satisfied. The traffic demand of a portion of airspace is the hourly number of flights planned to enter it, and its capacity is the upper bound on this number under which air-traffic controllers can work. Currently, the only form of demand-capacity balancing we allow is ground holding, that is the changing of the take-off times of not yet airborne flights. Experiments with projected European flight plans of the year 2030 show that already this first form of demand-capacity balancing is feasible without incurring too much total delay and that it can lead to a significantly better demand-capacity balance

    Constraint Programming Models for Chosen Key Differential Cryptanalysis

    Get PDF
    International audienceIn this paper, we introduce Constraint Programming (CP) models to solve a cryptanalytic problem: the chosen key differential attack against the standard block cipher AES. The problem is solved in two steps: In Step 1, bytes are abstracted by binary values; In Step 2, byte values are searched. We introduce two CP models for Step 1: Model 1 is derived from AES rules in a straightforward way; Model 2 contains new constraints that remove invalid solutions filtered out in Step 2. We also introduce a CP model for Step 2. We evaluate scale-up properties of two classical CP solvers (Gecode and Choco) and a hybrid SAT/CP solver (Chuffed). We show that Model 2 is much more efficient than Model 1, and that Chuffed is faster than Choco which is faster than Gecode on the hardest instances of this problem. Furthermore, we prove that a solution claimed to be optimal in two recent cryptanalysis papers is not optimal by providing a better solution

    Automatic Generation of Declarative Models For Differential Cryptanalysis

    Get PDF
    When designing a new symmetric block cipher, it is necessary to evaluate its robustness against differential attacks. This is done by computing Truncated Differential Characteristics (TDCs) that provide bounds on the complexity of these attacks. TDCs are often computed by using declarative approaches such as CP (Constraint Programming), SAT, or ILP (Integer Linear Programming). However, designing accurate and efficient models for these solvers is a difficult, error-prone and time-consuming task, and it requires advanced skills on both symmetric cryptography and solvers. In this paper, we describe a tool for automatically generating these models, called Tagada (Tool for Automatic Generation of Abstraction-based Differential Attacks). The input of Tagada is an operational description of the cipher by means of black-box operators and bipartite Directed Acyclic Graphs (DAGs). Given this description, we show how to automatically generate constraints that model operator semantics, and how to generate MiniZinc models. We experimentally evaluate our approach on two different kinds of differential attacks (e.g., single-key and related-key) and four different symmetric block ciphers (e.g., the AES (Advanced Encryption Standard), Craft, Midori, and Skinny). We show that our automatically generated models are competitive with state-of-the-art approaches. These automatically generated models constitute a new benchmark composed of eight optimization problems and eight enumeration problems, with instances of increasing size in each problem. We experimentally compare CP, SAT, and ILP solvers on this new benchmark
    • …
    corecore